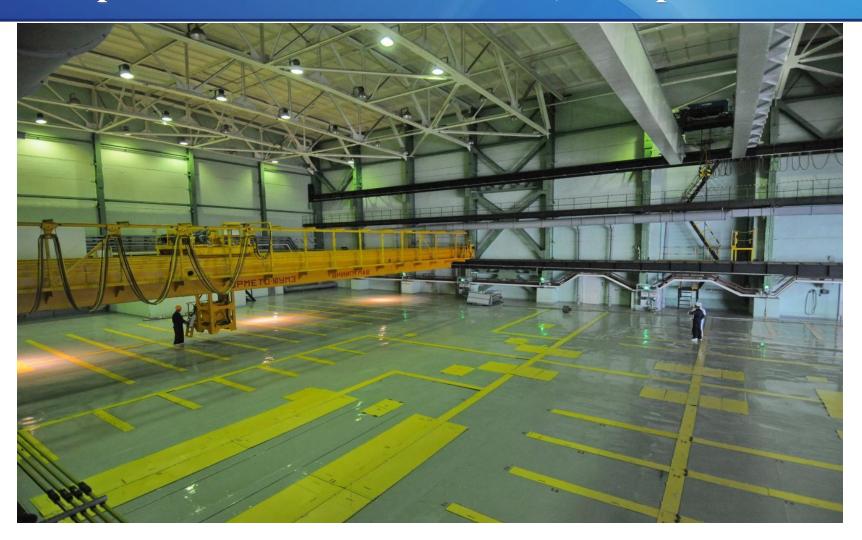

#### Государственная корпорация по атомной энергии «Росатом» ФГУП «Горно-химический комбинат»

# Обеспечение экологической безопасности на ФЯО ФГУП «ГХК» путём замыкания ядерного топливного цикла

ФЯО ФГУП «ГХК» П.М. Гаврилов




### Концепция замыкания ядерного топливного цикла на ФГУП «ГХК»



## Реализация промышленной инфраструктуры ЗЯТЦ на ФГУП «ГХК»

- 1. Централизованное «мокрое» хранилище ОЯТ РУ ВВЭР-1000.
- 2. Централизованное «сухое» хранилище ОЯТ РУ РБМК-1000 и ВВЭР-1000.
- 3. Опытно-демонстрационный центр по переработке ОЯТ на основе инновационных технологий (ОДЦ).
- 4. Производство МОКС-топлива для топливообеспечения РУ БН-800 на Белоярской АЭС.

# Централизованное водоохлаждаемое («мокрое») хранилище ОЯТ ВВЭР-1000, зал хранения



С 1985 года успешный приём и безопасное хранение ОЯТ РУ ВВЭР-1000.

#### Водоохлаждаемое («мокрое») хранилище ОЯТ ВВЭР-1000

#### Меры по обеспечению безопасности хранения ОЯТ

- > Значительное повышение сейсмоустойчивости хранилища за счёт: усиления фундамента, усиления строительных конструкций, облегчения кровли;
- ➤ Заменены грузоподъёмные механизмы на новые с увеличенной грузоподъёмностью;
- Увеличена производительность и надежность системы охлаждения отсеков хранения.
- ▶В настоящее время, для дальнейшего повышения уровня безопасности хранения ОЯТ, реализуются мероприятия по управлению запроектными авариями, а именно монтируется система орошения отсеков ОЯТ в случае их обезвоживания.
- ➤ Работа системы орошения основана на принципах пассивного обеспечения безопасности.

### Централизованное воздухоохлаждаемое («сухое») хранилище ОЯТ реакторов РБМК-1000



С февраля 2012 года функционирует пусковой комплекс «сухого» хранилища, предназначенный для хранения ОЯТ РБМК-1000.

Проект хранилища прошёл международную экспертизу в компании SGN (Франция). Предложения, указанные в экспертном заключении, были учтены при сооружении объекта.

### Строящиеся здания комплекса централизованного хранения ОЯТ энергетических реакторов



Комплекс хранения ОЯТ ВВЭР-1000 и РБМК-1000, в полном развитии, будет введён в эксплуатацию в 2015 году.

#### Технологии хранения ОЯТ

- ▶ Использование пассивного принципа обеспечения безопасности при хранении ОЯТ — естественная конвекция охлаждающего потока воздуха.
- ➤ В настоящее время идёт разработка новых принципов перегрузки ОТВС РБМК-1000, позволяющих значительно усовершенствовать процесс постановки ОЯТ на хранение и в два раза увеличить производительность комплекса.
- Увеличение производительности за счёт усовершенствования технологического процесса позволит качественно повысить уровень безопасности при перегрузке ОЯТ за счёт снижения количества технологических операций.
- Увеличение производительности также позволит значительно уменьшить активный период загрузки хранилища ОЯТ РБМК-1000 и, соответственно, снизить стоимость услуги хранения ОЯТ.

#### Горячая камера комплектации пеналов с ОЯТ РБМК-1000



**Централизованное воздухоохлаждаемое хранилище камерного типа самое безопасное и экономически привлекательное.** 

### Опытно-демонстрационный центр по переработке ОЯТ на основе инновационных технологий

**2015 год** — ввод в эксплуатацию пускового комплекса исследовательских горячих камер.

Отработка новых технологий по обращению с ОЯТ энергетических реакторов как на тепловых, так и на быстрых нейтронах, и замыкания ЯТЦ.

2018 год — ввод в эксплуатацию второго пускового комплекса - базовой технологии по переработке ОЯТ ВВЭР-1000 производительностью до 250 т ОЯТ/год. Отработка инновационных безопасных технологий переработки ОЯТ ВВЭР-1000 и выдача исходных данных для тиражирования технологии по переработке ОЯТ энергетических реакторов, с последующим модульным наращиванием мощностей переработки.



#### Цель создания ОДЦ

Цель создания ОДЦ на ФГУП «ГХК» – опытно-промышленная демонстрация возможности экологически безопасного и эффективного решения проблемы накопления ОЯТ.

Данная цель будет решена при безусловном обеспечении на ОДЦ:

- 1. Безопасности переработки ОЯТ (ядерная, радиационная, пожаровзрывобезопасность).
- 2. Отсутствии негативного экологического воздействия (отсутствие сбросов ЖРО в окружающую среду).
- 3. Экономическая эффективность.

## Базовая технология ОДЦ-прототип завода 3-го поколения



РТ-1 (ПО «Маяк») 1-е поколение



UP3 (Франция) 2-е поколение



ОДЦ (ГХК) прототип 3-го поколения

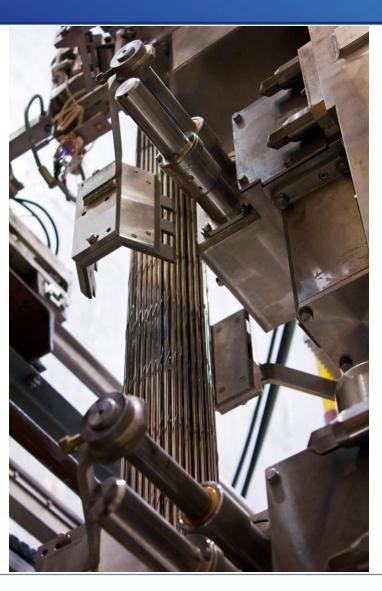
#### Некоторые параметры заводов разного поколения

| Поколение<br>завода | Завод по<br>переработке ОЯТ           | Обращение с жидкими РАО                     | Обращение с<br>твердыми ВАО |
|---------------------|---------------------------------------|---------------------------------------------|-----------------------------|
| 1-е поколение       | РТ-1 (ПО «Маяк»)                      | Сбросы жидких САО (около 50 м³/т ОЯТ) и НАО | 0,80 м <sup>3</sup> /т ОЯТ  |
| 2-е поколение       | UP2,3 (Франция),<br>Rokkasho (Япония) | Сбросы жидких НАО (100 м³/т ОЯТ)            | 0,15 м <sup>3</sup> /т ОЯТ  |
| 3-е поколение       | ОДЦ (ГХК)                             | Нет жидких сбросов                          | 0,1 м <sup>3</sup> /т ОЯТ   |

# Общий вид будущего комплекса по обращению с ОЯТ

2008÷2010 разработка технологии ОДЦ

2012 ÷2013 г. г. проектирование ОДЦ






2013 г. май начало строительства

2015 г. ввод в эксплуатацию пускового комплекса

#### Производство МОКС-топлива для топливообеспечения РУ БН-800



- ▶ В 2014 году на Горно-химическом комбинате впервые в мировой практике реализован в промышленном масштабе стратегический инвестиционный проект – создание производства МОКС-топлива для коммерческого реактора на быстрых нейтронах БН-800.
- ➤ Производство находится в подгорной части ФГУП «ГХК». Горная порода является естественным мощным контайнментом, надёжно защищая от любых угроз внешних природных и техногенных факторов воздействия.
- ➤ Все технологические операции максимально автоматизированы с использованием дистанционного управления, оборудование не имеет мировых аналогов.
- ▶ Это производство первым начнёт промышленное вовлечение потенциала плутония в ядерный топливный цикл России, путём замыкания ядерно-топливного цикла на основе эксплуатации реактора на быстрых нейтронах БН-800 с МОКС-топливом.

### Производство МОКС-топлива для топливообеспечения РУ БН-800



Производство мощностью 400 ТВС в год построено в подгорной части комбината в кратчайшие сроки – за 3 года с объёмом инвестиций около 9 млрд. руб.

# Стенд по отработке технологии получения уран-плутониевых топливных таблеток





На РХЗ создан опытный стенд для отработки технологии изготовления таблеток с МОКС-топливом, а также для тестирования топливных порошков с содержанием плутония до 30 % масс.

В процессе работы стенда получено 30 кг уран-плутониевых таблеток, соответствующих техническим требованиям на таблетки МОКС-топлива для РУ БН-800.

#### Взаимодействие с Российской Академией Наук



➤ 26.01.2015 объекты технологического комплекса ФГУП «ГХК» по замыканию ядерного топливного цикла посетил советник Президиума РАН, Председатель секции № 5 НТС Госкорпорации «Росатом», академик РАН Борис Фёдорович Мясоедов и ведущие специалисты Российской Академии Наук.

▶Отмечено, что проекты, реализуемые на ФГУП «ГХК», по уровню сложности и масштабу реализации не уступают ведущим международным научным и промышленным центрам.

▶Намечены пути дальнейшего сотрудничества и использования разработок академических институтов при реализации проектов Госкорпорации «Росатом» на площадке ФГУП «ГХК».

#### Заключение

- ➤ На площадке ФЯО ФГУП «ГХК», впервые в мировой практике, созданы и создаются промышленные производства замкнутого ядерного топливного цикла.
- ➤ Переработка ОЯТ и замыкание ЯТЦ позволит повысить безопасность обращения с ОЯТ ввиду качественного сокращения объёмов отработавшего ядерного топлива и снижения на порядки объёмов образующихся РАО.
- ➤ Все эти производства в целях максимальной технологической и экологической безопасности, а также экономической эффективности по существу объединены на одной площадке в единый технологический комплекс, который может обеспечить топливом атомный энергетический комплекс России, переводя ядерную энергетику в разряд безопасных возобновляемых энерготехнологий.